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1. Introduction

β-deformations of the N = 4 supersymmetric Yang-Mills define a family of conformally-

invariant four-dimensional N = 1 supersymmetric gauge theories. Remarkably, these β-

deformed theories mirror many non-trivial characteristic features of the N = 4 SYM,

including the S-duality, the AdS/CFT correspondence and the perturbative large-N equiv-

alence to the parent N = 4 theory, thus providing a continuous class of interesting general-

izations of the N = 4 SYM. One may expect that by studying properties of the β-deformed

theories and, in particular, the dependence of observables on the continuous deformation

parameter β we can understand better the gauge dynamics of this class of theories and of

the N = 4 as well.

Dualities between gauge and string theories have been studied intensively for more

than three decades. The AdS/CFT correspondence formulated in [2 – 4] provides a concrete

realization of such a duality. In its original formulation, the AdS/CFT duality relates the

string theory on a curved background AdS5 ×S5 to the N = 4 supersymmetric Yang-Mills

theory living on the boundary of AdS5. Understanding this duality in detail beyond the

BPS and the near BPS limits remains a challenge mainly due to the fact that one has to

deal with the weak-to-strong coupling correspondence.
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The AdS/CFT duality extends to the β-deformed theories [1] where it relates the

β-deformed N = 4 SYM and the supergravity on the deformed AdS5 × S̃5 background.

The gravity dual was found by Lunin and Maldacena in ref. [1], and this provides a precise

formulation of the AdS/CFT duality in the deformed case, which can be probed and studied

using instanton methods developed earlier for the N = 4 case in [5 – 8] and in [9 – 12].

Several perturbative calculations in the β-deformed theories were carried out recently

in [13 – 16] where it was noted that there are many similarities between the deformed and the

undeformed theories which emerge in the large number of colours limit. In particular, in [16]

it was shown that in perturbation theory there is a close relation between the scattering

amplitudes in the βR-deformed and in the original N = 4 theory. This correspondence

holds in the large-N limit and to all orders in (planar) perturbation theory. It states that

for real values of β all amplitudes in the β-deformed theory are given by the corresponding

N = 4 amplitudes times an overall β-dependent phase factor. The phase factor depends

only on the external legs and is easily determined for each class of amplitudes [16]. It follows

from these considerations [16] that the recent proposal of Bern, Dixon and Smirnov [17]

which determines all multi-loop MHV planar amplitudes in the N = 4 superconformal

Yang-Mills theory can be carried over to a wider family of gauge theories obtained by real

β-deformations of the N = 4 Yang-Mills.

The purpose of this paper is to consider non-perturbative instanton effects in the

β-deformed theories and in the context of the AdS/CFT correspondence. The Lunin-

Maldacena example [1] of the AdS/CFT duality relates the large-N limit of the β-deformed

N = 4 gauge theory to the type IIB string theory on the appropriately β-deformed

AdS5 × S̃5 background. The β-deformed gauge theory is living on the 4-dimensional

boundary of the AdS5 space. It is expected that each chiral primary operator (and its

superconformal descendants) in this boundary conformal theory corresponds in supergrav-

ity to a particular Kaluza-Klein mode on the deformed sphere S̃5. In this paper we will

consider only the operators which correspond to the supergravity states which do not de-

pend on S̃5 coordinates, i.e. which are the lowest Kaluza-Klein modes on the deformed

sphere. Furthermore, to simply the derivations, we will restrict ourselves to a particular

class class of such operators, considered previously in [5, 8], and to the minimal in n classes

of their correlators Gn.

Following the approach developed in ref. [8], we will evaluate all multi-instanton con-

tributions to these correlation functions in the appropriate large-N scaling limit1 and to

the leading non-vanishing order in perturbation theory around instantons. We will show

that these correlation functions in the β-deformed N = 4 SYM are in precise correspon-

dence with the supergravity expectations. More precisely, we will be able to reproduce a

class of leading higher-derivative corrections to the supergravity effective action, Seff , from

Yang-Mills instantons. In particular, we will see that the multi-instanton contributions

to Gn will reconstruct the appropriate moduli forms fn(τ, τ̄ ) present in the Seff . This is

a particularly non-trivial observation since the dilaton-axion τ parameter in the deformed

1The large-N limit appropriate for the comparison with the supergravity solution of [1], will also require

that the deformation parameter β is kept small. Hence, starting from section 5 we will take N → ∞ and

β → 0.
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supergravity solution is not anymore equal to the complexified coupling τ0 of the gauge the-

ory. The dilaton φ is, in fact, a non-trivial function of the coordinates µi on the deformed

sphere [1]

eφ = G1/2(β;µ1, µ2, µ3) · g2

4π
(1.1)

Here g2 is the Yang-Mills coupling constant and G is the function appearing in the Lunin-

Maldacena solution in eqs. (2.2)-(2.4) below. It will turn out, that in the β-deformed

N = 4 SYM, a proper inclusion of instanton collective coordinates will effectively up-

grade the usual exponent of the k-instanton action e2πikτ0 into the required expression

e2πikτ .

The rest of our findings parallels those in ref. [8]. We shall find that in the appro-

priately taken large-N scaling limit, the k-instanton collective coordinate measure has a

geometry of a single copy of the 10-dimensional space AdS5 × S̃5. We shall also observe

that this k-instanton measure includes the partition function of the SU(k) matrix model,

thus matching the description of the D-instantons as D(-1) branes in string theory. In the

appendix we show that the full Yang-Mills k-instanton integration measure in the deformed

theory is equivalent to the partition function of k D-instantons in the corresponding string

theory where β-deformations are introduced via star products.

In most of what follows we will consider the transformations with a real deformation

parameter β = βR. The generalization to the case of complex deformations will be carried

out only in the end in section 8. As one would have anticipated, our results and the

matching between the supergravity and the gauge theory expressions found at real values

of β also persist for complex deformations. One reason for this is the fact [1] that the

backgrounds with complex β can be generated by performing SL(2, R)s transformations

on the solutions with real β. At the same time, in gauge theory, β should transform [18] as a

modular form under the SL(2, Z)s S-duality. Some other related aspects of the β-deformed

gauge theory have been studied previously in refs. [19 – 32]

The β-deformations of the N = 4 supersymmetric gauge theory are described by the

superpotential

ig Tr(eiπβRΦ1Φ2Φ3 − e−iπβRΦ1Φ3Φ2) , (1.2)

where Φi are chiral N = 1 superfields. The resulting superpotential preserves the N = 1

supersymmetry of the original N = 4 SYM and leads to a theory with a global U(1)×U(1)

symmetry (in addition to the usual U(1)R R-symmetry of the N = 1 susy) [1]

U(1)1 : (Φ1,Φ2,Φ3) → (Φ1, e
iϕ1Φ2, e

−iϕ1Φ3)

U(1)2 : (Φ1,Φ2,Φ3) → (e−iϕ2Φ1, e
iϕ2Φ2,Φ3) (1.3)

It is known [15] that (1.2) describes an exactly marginal deformation of the theory in the

limit of large number of colors. (In a more general case of complex deformations, for the

theory to remain conformal one needs to satisfy the so-called Leigh-Strassler constraint [33].

For the real βR case this constraint is trivial in the large N limit.)

– 3 –
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2. Supergravity dual

The gravity dual of the β-deformed N = 4 gauge theory was identified by Lunin and

Maldacena in [1]. The U(1) × U(1) global symmetry (1.3) of the β-deformed SYM plays

an important rôle in this approach. One starts with the original AdS5 × S5 background

and compactifies it on a two-torus in such a way that the isometries of the torus match

with the global U(1) × U(1) symmetry in gauge theory. The idea [1] is then to use the

SL(2, R) symmetry of type IIB supergravity compactified along the two-torus to generate

a new solution of the supergravity equations. The SL(2, R) transformation acts on the

complex parameter τ = B12 + i
√

g of the original gravitational theory. Here B12 is the

NS-NS two-form field along the torus directions, and g is the determinant of the metric on

the torus. The SL(2, R) acts on this torus τ -parameter as follows

τ −→ τ

1 + βRτ
(2.1)

The geometry obtained in this way is (in the string frame) the product of AdS5 × S̃5,

where S̃5 is a deformed five-sphere. In what follows we write down only the part of the

supergravity solution which will be relevant for our purposes,2

ds2
str = R2

[

ds2
AdS5

+
∑

i

(dµ2
i + Gµ2

i dφ2
i ) + γ̂2Gµ2

1µ
2
2µ

2
3(

∑

i

dφi)
2

]

, (2.2)

eφ = eφ0G1/2 , (2.3)

G−1 = 1 + γ̂2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3) , γ̂ := R2βR , R4 = 4πeφ0N (2.4)

The deformed five-sphere in the supergravity solution above is parameterized by the three

radial variables µi, which satisfy the condition
∑3

i=1 µ2
i = 1, and the three angles φi.

The complete supergravity solution (which is valid for generic complex values of β)

can be found in the original paper [1]. In addition to the five-form field F5 already present

in the AdS5 × S5 geometry, the solution also includes the NS-NS two-form potential B2

and the RR potential C2.

It is important to note that the dilaton φ is no longer constant, but depends on the

coordinates µi of the deformed five-sphere. The constant parameter is φ0 which has the

meaning of the dilaton of the parent undeformed solution, and it maps to the coupling

constant of the dual gauge theory. However, it is φ and not φ0 which plays the røle of

the dilaton in the deformed supergravity solution. The dilaton φ and the axion C are

assembled in the standard way into a complex τ

τ = ie−φ + C (2.5)

Equation (2.3) relates this τ to the complexified coupling constant of the dual gauge theory,

τ0 = ie−φ0 + C =
4πi

g2
+

θ

2π
. (2.6)

2As mentioned earlier we also restrict to real values of β = βR which was called γ in [1]. We will comment

on the complex deformations in section 8.
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In summary, the dictionary between the parameters of the deformed Yang-Mills theory and

type IIB superstring theory on AdS5 × S5
γ is as follows:

e−φ G1/2 = e−φ0 =
4π

g2
, C =

θ

2π
(2.7)

R2 =
√

g2 N (2.8)

and R is the radius of the AdS5 space in units of
√

α′. The supergravity background is a

valid approximation to string theory in the small curvature regime [1]:

R À 1 , RβR ¿ 1 . (2.9)

In terms of the gauge theory variables, the appropriate limit to consider is

g2N À 1 , N À 1 , βR ¿ 1 . (2.10)

In the above, the N À 1 condition arises from the fact that the SL(2, Z) duality can be

used to map large string couplings to values which are not large.

As is well known, the supergravity action of type IIB theory is invariant under the

non-compact symmetry group SU(1, 1) ∼ SL(2, R). The action of this symmetry leaves

the metric invariant, but acts upon the dilaton-axion field τ of eq. (2.5)

τ −→ τ ′ =
aτ + b

cτ + d
, ad − bc = 1, a, b, c, d ∈ R. (2.11)

The string theory is invariant only under the SL(2, Z) subgroup of the SL(2, R). This

implies that the string theory effective action SIIB must be invariant under the SL(2, Z)

S-duality transformation.

The string effective action SIIB is related via the AdS/CFT holographic formula [3, 4]

to correlation functions in the gauge theory,

exp−SIIB [ΦO;J ] =

〈

exp

∫

d4xJ(x)O(x)

〉

. (2.12)

Here ΦO are Kaluza-Klein modes of the supergravity fields which are dual to composite

gauge theory operators O. The boundary conditions of the supergravity fields are set by

the gauge theory sources on the boundary of AdS5 via ΦO(x) ∝ J(x).

Constructing all the Kaluza-Klein modes on the deformed five-sphere is a non-trivial

task, hence, in this paper we are restricting ourselves to the lowest Kaluza-Kein modes

which do not depend on the coordinates of the deformed sphere.

D-instanton contributions in supergravity arise as (α′)3 corrections [9] to the classical

IIB theory. The D-instanton contribution to an n-point correlator Gn comes from a tree

level Feynman diagram with one vertex located at a point (x0, ρ, Ω̂) in the bulk of AdS5×S̃5.

The diagram also has n external legs connecting the vertex to operator insertions on the

boundary. There is a bulk-to-boundary propagator associated with each external leg [4, 34].

For example, an SO(6) singlet scalar free field of mass m on AdS5 has the bulk-to-boundary

propagator

K∆(x0, ρ;x, 0) =
ρ∆

(ρ2 + (x − x0)2)∆
, (2.13)
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where (mL)2 = ∆(∆ − 4). At leading order beyond the Einstein-Hilbert term in the

derivative expansion, the IIB effective action is expected to contain [35, 9] an R4 term3

(α′)−1

∫

d10x
√−g10 e−φ/2 f4(τ, τ̄ )R4 (2.14)

as well as its superpartners, including a totally antisymmetric 16-dilatino effective vertex

of the form [36, 37]

(α′)−1

∫

d10x
√−g10 e−φ/2 f16(τ, τ̄ )Λ16 + H.c. (2.15)

The dilatino Λ is a complex chiral SO(9, 1) spinor which transforms under the local U(1)

symmetry with the charge qΛ = 3/2. Under the SL(2, Z) transformations (2.11) all fields

Φ are multiplied by a (discrete) phase,

Φ −→
(

cτ + d

cτ̄ + d

)− qΦ/2

Φ , (2.16)

and the charge qΦ for the dilatino is 3/2 and for the R field it is zero.

Equations (2.14)–(2.15) are written in the string frame with the coefficients fn(τ, τ̄ )

being the modular forms of weights ((n−4),−(n−4)) under the SL(2, Z) transformations

(2.11),

fn(τ, τ̄ ) := f (n−4),−(n−4)(τ, τ̄ ) −→
(

cτ + d

cτ̄ + d

)n−4

f (n−4),−(n−4)(τ, τ̄ ) . (2.17)

The modular properties of fn precisely cancel the phases of fields in (2.16) acquired under

the SL(2, Z). Thus the full string effective action is invariant under the SL(2, Z) and this

modular symmetry ensures the S-duality of the type IIB superstring.

The modular forms fn have been constructed by Green and Gutperle in [35]. In the

weak coupling expansion the expressions for fn contain an infinite sum of exponential terms

e−φ/2 fn 3
∞
∑

k=1

const ·
(

k

G1/2 g2

)n−7/2

e2πikτ
∑

d|k

1

d2
, (2.18)

In the original undeformed N = 4 scenario, τ = τ0 and the modular forms fn in

the string effective action can be thought of as functions of the gauge coupling constants

τ0 and τ̄0. In this case, each of the terms in the expression above must correspond to a

contribution of an instanton of charge k. On the other hand, the k-instanton contributions

can be independently calculated directly in gauge theory. These calculations have been

performed in [5, 6] at the 1-instanton level and in [7, 8] for the general k-instanton case.

Remarkably, the SYM results of [5 – 8] tuned out to be in precise agreement with the

supergravity predictions for the effective action eqs. (2.14)–(2.18) and in eq. (2.20) below.

The goal of the present paper is to attempt to reproduce these results in the β-deformed

case. Hence we want to interprete the sum on the right hand side of (2.18) again as coming

3Here, R4 denotes a particular contraction [35] of four ten-dimensional Riemann tensors.
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from multi-instantons in gauge theory. We see that, at least potentially, there is a puzzle

in this interpretation as the Yang-Mills k-instantons are expected to contribute factors

proportional to e2πikτ0 rather than to e2πikτ . In the rest of the paper when we perform an

explicit k-instanton calculation in the β-deformed SYM we will find the resolution of this

puzzle.

The main object of interest for us are the n-point correlation functions of certain com-

posite operators in the β-deformed SYM. We can consider the same classes of the operators

as in [5, 8, 12] which correspond to the lowest KK-modes in supergravity. Specifically we

will analyze the gauge-invariant chiral correlators Gn, n = 16, 8 or 4, defined by:

G16 = 〈O(x1) · · · O(x16)〉 , O := ΛA
α = g−2σmn β

α trN Fmn λA
β , (2.19a)

G8 = 〈O(x1) · · · O(x8)〉 , O := B[AB]
mn = g−2 trN

(

λAσmnλB + 2iFmnΦAB
)

, (2.19b)

G8 = 〈O(x1) · · · O(x8)〉 , O := E(AB) = g−2 trN

(

λAλB + t
(AB)+
[abc] φaφbφc

)

, (2.19c)

G4 = 〈O(x1) · · · O(x4)〉 , O := Qab = g−2 trN

(

φaφb − 1
6δabφcφc

)

, (2.19d)

where t in eq. (2.19c) is a numerical tensor. In the notation of ref. [12] these correlators were

called the minimal ones. The non-minimal correlators Gn with higher n were considered

in [12] in the context of the original N = 4 AdS/CFT correspondence. In the present

paper we will concentrate on the minimal case above, and paying particular attention to

the correlators in (2.19a) and (2.19b).

The AdS/CFT holographic relation then predicts that these correlators must lead on

the supergravity side to the following expressions:

Gn ∼ (α′)−1

∫

d4x
dρ

ρ5

∫

Gd5Ω̂ tn e−φ/2 fn(τ, τ̄ )

n
∏

i=1

K(x0, ρ;xi, 0) (2.20)

Here Gd5Ω̂ represents the volume form on the S̃5 and each K denotes the bulk-to-boundary

propagator which corresponds to each particular operator in (2.19a)–(2.19d). Various index

contractions between the n states (propagators) are schematically represented by a tensor

tn. We want to verify the above relations using multi-instanton calculations in the β-

deformed SYM theory. As in ref. [8] it will actually be sufficient for this purpose to

concentrate on the multi-instanton partition function. The correlators can be obtained

from the latter by inserting in it the operators calculated on the instanton solution.

3. Marginal β-deformations of N = 4 SYM

The β-deformed Yang-Mills is an N = 1 supersymmetric conformal gauge theory with a

global U(1) × U(1) symmetry (1.3). Lunin and Maldacena have pointed out [1] that the

βR-deformation in (1.2) can be understood as arising from introducing the star products

between the fields in the N = 4 Lagrangian,

f ∗ g ≡ eiπβR(Qf
1Qg

2−Qf
2Qg

1)fg (3.1)

– 7 –
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Here (Qfield
1 , Qfield

2 ) are the U(1)1 × U(1)2 charges of the fields (f or g). The values of the

charges for component fields are read from (1.3):

Φ1 , λ1 : (Q1 , Q2) = (0 ,−1) (3.2)

Φ2 , λ2 : (Q1 , Q2) = (1 , 1) (3.3)

Φ3 , λ3 : (Q1 , Q2) = (−1 , 0) (3.4)

Am , λ4 : (Q1 , Q2) = (0 , 0) (3.5)

and for the conjugate fields (Φ̄i and λ̄i) the charges are opposite.

The component Lagrangian of the βR-deformed theory is easily read from the N = 4

Lagrangian

L = Tr

(

1

4
FµνFµν + (DµΦ̄i)(DµΦi) −

g2

2
[Φi,Φj ]∗[Φ̄

i, Φ̄j]∗ +
g2

4
[Φi, Φ̄

i][Φj , Φ̄
j ] (3.6)

+λAσµDµλ̄A − ig([λ4, λi]Φ̄
i + [λ̄4, λ̄i]Φi) +

ig

2
(εijk[λi, λj ]∗Φk + εijk[λ̄

i, λ̄j ]∗Φ̄
k)

)

.

In the above equation the star products (3.1) are used for fields charged under the U(1)1 ×
U(1)2. We have also used the fact that the star product is trivial between two fields which

have opposite U(1)1×U(1)2 charges. We have also introduced the βR-deformed commutator

of fields which is simply

[fi, gj ]∗ := fi ∗ gj − gj ∗ fi = eiπβij figj − e−iπβij gjfi , (3.7)

and βij is defined as

βij = −βji , β12 = −β13 = β23 := βR . (3.8)

More generally, and for future reference we also define a 4 × 4 deformation matrix βAB

with A,B = 1, . . . , 4

βAB = −βBA , β4i = 0 , β12 = −β13 = β23 := βR . (3.9)

The component Lagrangian in the form (3.6) is well-suited for tracing the βR-dependence

in perturbative calculations and it was utilized in [16].

For carrying out multi-instanton calculations in the formalism of [8, 11] it is more

convenient to switch to a different basis for scalar fields. We assemble the three complex

scalars Φi into an adjoint-valued antisymmetric tensor field ΦAB(x), subject to a specific

reality condition:
1
2εABCD ΦCD = Φ̄AB , (3.10)

which implies that it transforms in the vector 6 representation of SO(6)R symmetry of the

N = 4 SYM. In terms of the six real scalars φa it can be written as [8]

ΦAB =
1√
8
Σ̄AB

a φa , Φ̄AB = − 1√
8
ΣAB

a φa , a = 1, . . . , 6 (3.11)

– 8 –
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where the coefficients ΣAB
a and Σ̄AB

a are expressed in terms of the ’t Hooft η-symbols:

Σa
AB =

(

η1
AB , iη̄1

AB , η2
AB , iη̄2

AB , η3
AB , iη̄3

AB

)

, (3.12)

Σ̄AB
a =

(

− η1
AB , iη̄1

AB ,−η2
AB , iη̄2

AB ,−η3
AB , iη̄3

AB

)

. (3.13)

Here η and η̄ are the selfdual and anti-selfdual ’t Hooft symbols [38]:

η̄c
AB = ηc

AB = εcAB A,B ∈ {1, 2, 3},
η̄c
4A = ηc

A4 = δcA, (3.14)

ηc
AB = −ηc

BA, η̄c
AB = −η̄c

BA.

The relation between the two bases of scalar fields is then given by

Φ1 =
1√
2
(φ1 + iφ2) = 2 Φ̄23 = 2Φ14

Φ2 =
1√
2
(φ3 + iφ4) = 2 Φ̄31 = 2Φ24 (3.15)

Φ3 =
1√
2
(φ5 + iφ6) = 2 Φ̄12 = 2Φ34

and their U(1)1 × U(1)2 charges can be read off (3.2)–(3.4)

4. Instantons in the β-deformed N = 4 SYM

In pure gauge theory, instantons obey the self-duality equation

Fmn = ∗Fmn (4.1)

The ADHM k-instanton [39 – 41] is the gauge configuration, Am, which is the general

solution of (4.1) with the topological charge k. When gauge fields are coupled to fermions

and scalars, as in the N = 4 SYM, one needs to consider the coupled classical Euler-

Lagrange equations instead of (4.1). Instanton configurations then also include fermion

and scalar-field components. Our goal, however, is not just to find classical solutions,

but rather to calculate their quantum contributions to correlators Gn, which includes the

effects of a perturbative expansion in the instanton background. The way to take the

leading perturbations into account automatically is to modify the background configuration

itself as explained in [8]; however, the instanton supermultiplet is then no longer an exact

solution to the coupled equations of motion. In particular, k-instanton fermion components

in the N = 4 SU(N) SYM are defined [8] to contain all of the 8kN fermion zero modes

of the Dirac operator, /̄Dα̇α
and not just the 16 exact unlifted zero modes. Similarly, in

the β-deformed theory, the same total of 8kN fermion zero modes will be included into

the k-instanton supermultiplet, even though only 4 of them are exact in the theory with

N = 1 supersymmetry.
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As a result, our strategy (see [8, section 2] and in [11, section 4] for more detail) is to

solve Euler-Lagrange equations iteratively, order by order in the Yang-Mills coupling. In

this paper we restrict our attention to the leading semiclassical order, meaning the first

non-vanishing order in g at each topological level. The relevant equations which define

these leading order instanton component fields are the self-duality equation (4.1) together

with the fermion zero-mode equation

/̄Dα̇α
λA

α = 0 (4.2)

and the equation for the scalar field, which for the β-deformed theory takes the form

D2ΦAB =
√

2 i (λA ∗ λB − λB ∗ λA ) (4.3)

Here /̄Dα̇α
= Dmσ̄α̇α

m and D2 = DmDm where Dm is the covariant derivative in the instan-

ton background Am.

Equation (4.1) specifies the gauge field instanton component Am of topological charge

k. The second equation (4.2) defines gaugino components λA of the instanton. As al-

ready mentioned, all 8kN adjoint fermion zero mode solutions of (4.2) are included in the

k-instanton supermultiplet. Only 4 of these modes are protected by the N = 1 supercon-

formal invariance of the theory and are exact zero modes. Remaining 8kN − 4 fermion

zero modes will be lifted by interactions, this means that the instanton action will depend

on collective coordinates of these fermion modes.

Finally, the last equation (4.3) determines the scalar field instanton components ΦAB in

terms of the gauge-field and gaugino components. β-deformation affects only this equation

and it appears via the star product in the commutator on the right hand side. Apart from

this obvious modification in (4.3), all three equations (4.1)–(4.3) are the same as in the

undeformed N = 4 SYM of ref. [8]. For convenience we have rescaled all the fields so

that the only g dependence in the action is through the overall coefficient g−2; the explicit

g dependence in the Euler-Lagrange equations can be trivially restored by undoing this

rescaling.

In order to evaluate correlators Gn in the SYM picture, one inserts the n appropriate

gauge-invariant operators under the integration
∫

dµk
phys exp(−Sk

inst) where Sk
inst is the k-

instanton action and dµk
phys is the collective coordinate measure.

The ADHM gauge-field and the gaugino components of the instanton are parameterized

by a set of collective coordinates. The scalar field is entirely determined in terms of Am

and λA in (4.3) and no new collective coordinates of the instanton are associated with ΦAB.

In general, there are 4kN independent bosonic and 8kN independent fermionic collective

coordinates of a k-instanton configuration in our model. The simplest way to define the

collective coordinate integration measure dµk
phys is to consider an even larger set of instanton

collective coordinates which are not all independent, but satisfy certain algebraic equations

– the ADHM constraints (4.5).

These bosonic and fermionic collective coordinates live, respectively, in an (N+2k)×2k

complex matrix a, and in an (N + 2k)× k Grassmann-valued complex matrix MA, where
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the SU(4)R index A = 1, 2, 3, 4 labels the supersymmetry. In components:4

a =

(

wuiα̇
(

a′βα̇

)

li

)

, MA =

(

µA
ui

(

M′A
β

)

li

)

(4.4)

where both a′m (defined by a′βα̇ = a′mσm
βα̇) and M′A

β are Hermitian k × k matrices. These

matrices are subject to the ADHM constraints:

tr2 (τ cāa)ij = 0 ,
(

M̄Aa + āMA
)

β ij
= 0 (4.5)

as well as to a U(k) symmetry

wiuα̇ → wjuα̇Uji , a′mij → U−1
ik a′mkl Ulj , U ∈ U(k) . (4.6)

In the dilute instanton gas limit, the individual collective coordinates of the k far-

separated instantons are

xi
n = −(a′n)ii , (4.7a)

ρ2
i = 1

2 w̄α̇
iu wuiα̇ , (4.7b)

(tci )uv = ρ−2
i wuiα̇ (τ c)α̇

β̇
w̄β̇

iv , (4.7c)

where xi
n are positions, ρi are the sizes and tci are the SU(2) generators of the individual

instantons i = 1, . . . , k.

The gauge field, gaugino and scalar field components of the k-instanton configuration

which solve equations (4.1)–(4.3) can be found in ref. [8, 11] for the original N = 4 SYM.

The multi-instanton components in the β-deformed theory are obtained from the N = 4

expressions in [8, 11] simply by applying the star products for all quantities charged under

the U(1) × U(1) symmetry.

This multi-instanton configuration gives rise to the k-instanton action

Sk
inst =

8π2k

g2
+ Sk

quad . (4.8)

Here Sk
quad is a term quadrilinear in fermionic collective coordinates, with one fermion

collective coordinate chosen from each of the four gaugino sectors A = 1, 2, 3, 4 :

Sk
quad =

π2

g2
εABCD trk

(

ΛA∗B L
−1 ΛC∗D

)

. (4.9)

The k × k anti-Hermitian fermion bilinear ΛA∗B is given by5

ΛA∗B :=
1

2
√

2

(

M̄A ∗MB − M̄B ∗MA
)

(4.10)

4We use notations of refs. [8, 11] throughout. The indices u, v = 1, . . . , N are SU(N) indices; α, α̇, etc. =

1, 2 are Weyl indices (traced over with ‘tr2 ’); i, j = 1, . . . , k (k being the topological number) are instanton

indices (traced over with ‘trk’); and m, n = 1, 2, 3, 4 are Euclidean Lorentz indices. Pauli matrices are (τ c) β
α

where c = 1, 2, 3.
5The ∗-subscript in ΛA∗B is used to indicate that the right hand side of (4.10) contains the star-product

of the Grassmann collective coordinates M̄A and M̄B.
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and L is a linear self-adjoint operator that maps the k2-dimensional space of such matrices

onto itself:

L · Ω = 1
2{Ω, w̄α̇wα̇} + [a′n, [ā′n,Ω]] . (4.11)

The expression for the k-instanton action in the N = 4 theory was first derived in [42] and

subsequently used in [8, 11]. The only modification of this expression in the β-deformed

theory is the appearance of the star product between the fermionic collective coordinates

in (4.10). In general, the Grassmann collective coordinates MA and M̄A are so far the

only parameters appearing in the instanton configuration which are charged under the

U(1) × U(1). Hence the β-dependence is recovered from the N = 4 results by introducing

the star products in expressions involving MA and M̄A parameters.6 In the original N = 4

theory, Sk
quad lifts all the adjoint fermion modes except the 16 exact supersymmetric and

superconformal modes. The β-deformed theory lifts 8kN − 4 fermion modes. The unlifted

modes are the two supersymmetric λα A=4
ss and two superconformal modes λ A=4

sc α̇ of the

unbroken N = 1 supersymmetry.

Following ref. [8], we now want to simplify Sk
quad by integrating in some new bosonic

parameters. The idea is to replace the fermion quadrilinear Sk
quad with a fermion bilinear

coupled to a set of auxiliary Gaussian variables. These take the form of an anti-symmetric

tensor χAB = −χBA whose elements are k × k matrices in instanton indices. We have

exp
(

−Sk
quad

)

= (4.12)

π−3k2 (

detk2L
)3

∫

d6k2
χ exp

[

− trk (εABCD χAB L χCD) + 4πig−1trk (χAB ΛA∗B)
]

The variable χAB transforms in the vector representation of the SO(6) ∼= SU(4) R-

symmetry and is subject to the reality condition χ†
AB = 1

2εABCDχCD

Next we turn to the k-instanton N = 4 collective coordinate measure. This measure in-

volves integrations over all bosonic and fermionic collective coordinates of the k-instanton,

subject to the bosonic and fermionic ADHM constraints (4.5). These constraints are imple-

mented via insertions of the appropriate delta functions [43]. The k-instanton integration

measure for N = 4 SYM reads [8]:

∫

dµk
phys =

2−k2/2(C1)
k

Vol U(k)

∫

d4k2
a′ d2kN w̄d2kNw

4
∏

A=1

d2k2M′AdkN µ̄A dkNµA(detk2L)−3

×
k2
∏

r=1

[

∏

c=1,2,3

δ
(

1
2 trk T r(tr2 τ cāa)

)

4
∏

A=1

∏

α̇=1,2

δ
(

trk T r(M̄Aaα̇ + āα̇MA)
)

.

(4.13)

The constant C1 is fixed at the 1-instanton level [8]

C1 = 2−2N+1/2π−6Ng4N (4.14)

6We note that ΛA∗B and εABCD ΛC∗D are oppositely charged under the U(1)×U(1) and hence the star

product is not needed on the right hand side of (4.9).
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by comparing eq. (4.13) with the standard 1-instanton ’t Hooft-Bernard measure [38, 44].

The integrals over the k×k matrices a′n, M′A and AAB are defined in (4.13) as the integral

over the components with respect to a Hermitian basis of k × k matrices T r normalized so

that trk T rT s = δrs.

The complete instanton partition function,
∫

dµk
phys exp(−Sk

inst), in the β-deformed

gauge theory is given by7

(C1)
k2−k2/2π−3k2

Vol U(k)

∫

d4k2
a′ d2kN w̄ d2kNw d6k2

χ

4
∏

A=1

d2k2M′A dkN µ̄A dkNµA

k2
∏

r=1

[

∏

c=1,2,3

δ

(

1

2
trk T r(tr2 τ cāa)

) 4
∏

A=1

∏

α̇=1,2

δ
(

trk T r(M̄Aaα̇ + āα̇MA)
)

]

exp

[

−8π2

g2
− trk (εABCD χAB L χCD) +

4πi

g
trk (χABΛA∗B)

]

(4.15)

We note that this expression differs from the original N = 4 result of [8] only through the

star product in the last term in the exponent. In the following section we will see that this

fact has profound consequences.

In the appendix we also give an alternative string theory derivation of (4.15). We

show there that our gauge theory expression (4.15) is identical to the partition function of

k D-instantons in string theory with the β-deformation.

5. The large-N saddle-point integration: 1-instanton case

We will first carry out integrations over collective coordinates in the simplest case of a

single instanton k = 1. The generalization to multi-instantons will be discussed in the

following section.

One way to carry out the single-instanton calculation, is to first solve the ADHM

constraints (4.5), and then to integrate out the corresponding delta-functions in (4.15).

The collective coordinates (4.4) which satisfy the k = 1 ADHM constraints can be written

in the simple canonical form [45, 6]:

a =





















0 0
...

...

0 0

ρ 0

0 ρ

−xm
0 σm





















, MA =

























νA
1
...

νA
N−2

4iρη̄A1

4iρη̄A2

4ξA
1

4ξA
2

























(5.1)

Here we follow the usual notation where ρ ∈ IR and xm
0 ∈ IR4 denote the size and position

of the instanton, and ξA
α and η̄Aα̇ are the supersymmetric and superconformal fermion

7Note that (4.15) does not contain factors of detL; they cancelled out between eqs. (4.12) and (4.13).
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zero modes, respectively. Equation (5.1) assumes the canonical ‘North pole’ embedding

of the SU(2) instanton within SU(N); more generally there is a manifold of equivalent

instantons obtained by acting on (5.1) by transformations Ω in the coset space Ω ∈
U(N)/(U(N − 2) × U(1)). The complex Grassmann coordinates νA

i in eq. (5.1) (which

do not carry a Weyl spinor index) may be thought of as the superpartners of the coset

embedding parameters Ω. Together, ξA
α , η̄A

α̇ , νA
i and ν̄A

i constitute 8N fermionic collective

coordinates of a single instanton in the N = 4 SYM.

After integrating out the delta functions imposing the ADHM constraints, and in-

tegrating over the instanton iso-orientations Ω, the instanton measure (4.15) for k = 1

reduces to:

∫

dµ1
phys e−S1

inst =
2−31π−4N−5g4N

(N − 1)!(N − 2)!

∫

d4x0 dρ d6χ

4
∏

A=1

d2ξA d2η̄A d(N−2)νA d(N−2)ν̄A

ρ4N−7 exp

[

−8π2

g2
− 2ρ2χaχa +

4πi

g
χABΛA∗B

]

. (5.2)

The integral is expressed in terms of the collective coordinates (5.1) and we have substituted

the 1-instanton expression L = 2ρ2. The fermion bilinear in the 1-instanton case reads

ΛA∗B =
1

2
√

2

N−2
∑

i=1

(

eiπβAB ν̄A
i νB

i − e−iπβAB ν̄B
i νA

i

)

+ i8
√

2 sin(πβAB)
(

ρ2η̄A · η̄B + ξA · ξB
)

(5.3)

In the expression above we used the fact the products of Grassmann parameters with the

Weyl index ξA · ξB := ξAαξB
α and η̄A · η̄B := η̄A

α̇ η̄Bα̇ are symmetric in A and B. The 4 × 4

antisymmetric matrix βAB was defined in (3.9).

It is worth noting that the second term on the right hand side of (5.3) is non-vanishing

only for non-zero values of the deformation parameter βAB . This implies that there are

precisely four exact fermion zero modes in the β-deformed theory which do not enter (5.3):

two supersymmetric ones, ξ4
α, and two superconformal η̄4

α̇ modes. In the undeformed N = 4

theory, all 16 supersymmetric and superconformal modes were absent from ΛAB and hence

from the instanton action.

However, even though only 4 out of 16 supersymmetric and superconformal modes

are exact, they will altogether be irrelevant for our purposes. The main point here is the

fact that we can choose such correlators that all 16 of these modes will be saturated by

the instanton expressions for the Yang-Mills operators inserted into the partition function

(5.2). At the same time we require that all of the remaining ν and ν̄ modes in the instanton

partition function should not be lifted by the insertions of the operators. For this to

be correct, we first of all need to restrict ourselves to the insertions of gauge invariant

composite operators which correspond to zero KK modes on the deformed sphere S̃5 in

supergravity.8 Secondly, we have to restrict to the minimal correlators (2.19a)–(2.19d) of

these operators. In the case of 〈Λ16〉 correlator (2.19a) and the 〈B8〉 correlator (2.19b)

8Insertions of the operators corresponding to non-zero KK modes would lift some of the ν and ν̄ modes,

as in the β = 0 case studied in [8, 12].
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all of the 16 supersymmetric/superconformal modes and none of the ν and ν̄ modes are

lifted by the operator insertions.9 In summary, for our purposes of calculating the minimal

correlators in (2.19a), (2.19b) (and also in (2.19c), (2.19d) in the small-β regime) one can

always neglect the second term on the right hand side of (5.3), which is what we will do

from now on.

We can now start integrating out fermionic collective coordinates νA
i and ν̄A

i from the

instanton partition function (5.2). For each value of i = 1, . . . , N − 2 this integration gives

a factor of
(

4π

g

1√
2

)4

det4

(

eiπβAB χAB

)

(5.4)

The determinant above can be calculated directly. It will be useful to express the result

in terms of the three complex variables Xi which are defined in terms of χAB in the way

analogous to eqs. (3.15):

X1 = χ1 + iχ2 = 2
√

2χ†
23 = 2

√
2 χ14

X2 = χ3 + iχ4 = 2
√

2χ†
31 = 2

√
2 χ24 (5.5)

X3 = χ5 + iχ6 = 2
√

2χ†
12 = 2

√
2 χ34

In terms of these degrees of freedom, the β-deformed determinant takes the form

det4

(

eiπβAB χAB

)

= (5.6)

1

64

(

(|X1|2 + |X2|2 + |X3|2)2 − 4 sin2(πβR) (|X1|2|X2|2 + |X2|2|X3|2 + |X1|2|X3|2)
)

It follows that the determinant depends only on the three absolute values of |X| and is

independent of the three angles. We can further change variables as follows:

|Xi| = r µi ,
3

∑

i=1

µ2
i = 1 (5.7)

and write

(

4π

g

1√
2

)4

det4

(

eiπβAB χAB

)

=

(

π

g

)4

r4
(

1 − 4 sin2(πβR)Q
)

(5.8)

where

Q := µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3 . (5.9)

9For the non-minimal correlators involving higher values of n this is not the case anymore. At the same

time, even the minimal correlators 〈E8〉 and 〈Q4〉 in (2.19c)–(2.19d) can receive corrections from saturating

some of the ν and ν̄ modes by the operator insertions. This would then require one to keep (part or all)

of the 12 lifted supersymmetric/superconformal modes in the exponent. These corrections can in principle

be straightforwardly calculated in the small β-limit, which is the regime relevant for comparison with the

supergravity. We thank Stefano Kovacs for pointing this out to us. For more detail on the fermion-zero-

mode structure of the operator insertions we refer the reader to ref. [12].
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We also split the integral over d6χ in the partition function into an integral over r and the

integral over the 5-sphere Ω̂:

∫

d6χ =

∫

r5 dr d5Ω̂ , where

∫

d5Ω̂ ∝
∫

dµ2
1 dµ2

2 dµ2
3 δ

(

3
∑

i=1

µ2
i − 1

)

. (5.10)

In summary after integrating out all of the ν and ν̄ fermionic collective coordinates we find

∫

dµ1
phys e−S1

inst =
g8

231π13(N − 1)!(N − 2)!

∫

d4x0
dρ

ρ5
d5Ω̂

∏

A=1,2,3,4

d2ξA d2η̄A

e
− 8π2

g2
(

1 − 4 sin2(πβR)Q
)N−2

ρ4N−2 IN (5.11)

Here IN denotes the r integration, which it is instructive to separate out:

IN =

∫ ∞

0
dr r4N−3 e−2ρ2r2

=
1

2
(2ρ2)−2N+1

∫ ∞

0
dxx2N−2 e−x =

1

2
(2ρ2)1−2N (2N − 2)!

(5.12)

From eqs. (5.11)–(5.12) one sees that the x0 and ρ integrations assemble into the scale-

invariant AdS5 volume form d4x0 dρ ρ−5 and also the integration over the 5-sphere arises

from d5Ω̂. However, it also follows that the final result given by eqs. (5.11)–(5.12) is so

far unsatisfactory from the perspective of the supergravity interpretation. First of all, the

χ variables gave rise to the integration over the undeformed sphere S5. Secondly, the βR-

dependent factor, sin2(πβR)Q, is neither spherically-invariant (due to its Q-dependence)

nor can it be easily associated with the deformed sphere S̃5. Finally, the exponent of the

instanton action in (5.12) is of the form e
−8π2

g2+iθ = e2πiτ0 which is not of the form e2πiτ

expected in supergravity.

Quite remarkably, all of these perceived problems of eqs. (5.11)–(5.12) can be resolved

by taking the large-N limit and carefully specifying the appropriate order of limits proce-

dure. We will now describe this procedure in detail.

On the gauge theory side we have no choice but to work in the weak-coupling limit. To

justify working with the leading-order instanton and neglecting and infinite set of higher

order terms in perturbation theory in the instanton background, we must take the limit

g2N → 0 and only after that impose the large N limit. In addition, so far we have

been treating the β-deformation parameter as an independent fixed constant. However,

as we have seen in section 2, the validity of the Lunin–Maldacena supergravity solution is

restricted to the regime of small β. We proceed with the Yang-Mills instanton calculation

by taking the limits in the following order:

1. g2 ¿ 1 with N and βR being fixed

2. N À 1 , β2
R ¿ 1

The second limit shall be taken in such a way that β2
RN is held fixed. In fact, our Yang-

Mills results are more general than that and hold for any values of the parameter β2
RN. It

can be shown that the derivation below holds for β2
RN À 1 and β2

RN ¿ 1.
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We now consider the factor

F := e
− 8π2

g2
(

1 − 4 sin2(πβR)Q
)N−2

(5.13)

which appears on the right hand side of (5.11) and simplify it according to the limits above.

First, we replace the sin2(πβR) by (πβR)2 which is justified since β2
R ¿ 1. Next, we note

that in our limit
(

1 − 4 (πβR)2 Q
)N−2 ∼ exp

[

N log(1 − 4π2β2
R Q)

]

∼ exp
[

−Nβ2
R 4π2 Q

]

. (5.14)

In the last expression above we have neglected the higher-order terms O(Nβ4
RQ2) ∼ 1/N ¿

1 which arose from the expansion of the logarithm.

This allows us to write down the F-factor defined in (5.13) as

F = exp

[

−8π2

g2
− Nβ2

R 4π2 Q

]

= exp

[

−8π2

g2

(

1 + 1
2 Nβ2

Rg2 Q
)

]

. (5.15)

We stress that the expression above is exact in the ordered weak-coupling–large-N–small-β

limit which we use in our semi-classical Yang-Mills calculation.

We now compare this F-factor arising from the Yang-Mills instanton in the weak

coupling limit to e2πiτ in the Lunin-Maldacena supergravity solution. We recall that τ is the

parameter which combines the natural dilaton and the axion of the deformed supergravity

solution

τ = ie−φ + C := iτ2 + τ1 (5.16)

This τ is related to τ0 and hence to the SYM couplings via a non-trivial function G as

follows10

e−2πτ2 = e−2πτ02 G−1/2
, τ0 =

2πi

g2
+

θ

2π
:= iτ02 + τ01 (5.17)

Here G is the function of the coordinates µi on the deformed sphere, and it also depends

on the deformation parameter γ̂

G−1 = 1 + γ̂2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3) , γ̂2 = β2

RNg2 (5.18)

We now want to take the same weak-coupling–large-N–small-β limit of the supergravity

expressions (5.17)–(5.18). We find

e−2πτ2 = exp

[

−8π2

g2

(

1 + Nβ2
Rg2 Q

)
1
2

]

(5.19)

= exp

[

−8π2

g2
− 4π2 Nβ2

R Q+ ∼ (Nβ2
R)2g2Q2 + . . .

]

.

The linear in Q term is unaffected in the limit, while the quadratic term is negligible,

(Nβ2
R)2g2Q2 ∼ g2 ¿ 1. This gives

e2πiτ = F (5.20)

where we have restored the θ parameter in the Yang-Mills instanton action.

10The axion C or the Yang-Mills θ parameter are not changed by this transformation and the real parts

of the two τ ’s are the same τ1 = τ01. When working with instantons we will not pay attention to the θ

parameter, if required it can always be trivially restored in the instanton action.
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From these considerations we conclude that the F-factor which arises from the Yang-

Mills instanton calculation in the semi-classical limit of the deformed theory is equivalent

to the corresponding supergravity factor e2πiτ of eq. (5.17) in the Lunin-Maldacena back-

ground. For this equivalence it is necessary to identify the µi coordinates of the instanton

χ-collective-coordinates defined in (5.7), (5.9) with the µi coordinates of the deformed S̃5

sphere of the Lunin-Maldacena background. This implies that the integration measure over

the ‘angles of’ χa, or more precisely over the the 5-dimensional manifold Ω̂ in (5.10) should

correspond to the volume element on the deformed S̃5 sphere. This volume element ωS̃5

over the deformed sphere S̃5 can be found from the Lunin-Maldacena metric. In the string

frame we get
∫

ωS̃5 =

∫

ωS5G (5.21)

where ωS5 is the volume element of the original 5-sphere, and G is given in (5.18).

We have seen above that when G−1/2 appears in the exponent weighted with the

instanton action, it gives rise to two terms in the semiclassical limit: the order-1 term and

the order-Q term. However, when G appears in the pre-exponent, as on the right hand

side of (5.21), it is indistinguishable from unity. Indeed,

G = (1 + g2NβR Q)−1 = 1 − g2Nβ2
R Q + . . . → 1 (5.22)

since g2Nβ2
R Q ∼ g2 ¿ 1 and should be neglected. This amounts to identifying

∫

ωS̃5 =

∫

d5Ω̂ G →
∫

d5Ω̂ (5.23)

For consistency we can also re-calculate IN in (5.11) in the large-N limit. First one

rescales r →
√

Nr, or equivalently, χa →
√

Nχa, so that N factors out of the exponent.

The integral then becomes

IN = N2N−1

∫ ∞

0
dr r−3 e2N(log r2−ρ2r2) , (5.24)

which is in a form amenable to a standard saddle-point evaluation. The saddle-point is at

r = ρ−1 and, to leading order, a Gaussian integral around the solution gives

lim
N→∞

IN = ρ2−4NN2N−1e−2N

√

π

N
, (5.25)

which is valid up to 1/N corrections.

Our final result for the single-instanton partition function in the semi-classical large-N

limit takes the following simple form:

∫

dµ1
phys e−S1

inst →
√

Ng8

233π27/2

∫

d4x0 dρ

ρ5
d5Ω̂

∏

A=1,2,3,4

d2ξAd2η̄A e−2πτ02G−1/2+2πτ1

=

√
Ng8

233π27/2

∫

d10X
√−g10

∏

A=1,2,3,4

d2ξAd2η̄A e2πiτ (5.26)
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where the integration over d10X
√−g10 is the integration of the 10-dimensional space which

corresponds to the Lunin-Maldacena background. This 10-dimensional bosonic integration

can be factored into the AdS5-part parameterized by the instanton position and the scale-

size, d4x0
dρ
ρ5 , times the 5-dimensional integration over the deformed sphere S̃5 parameter-

ized by d5Ω̂ G → d5Ω̂. The main feature of our 1-instanton result (5.26) is the appearance

of the complete dilaton-axion factor in the exponent, e2πiτ .

6. Multi-instanton large-N integration

In this section we return to the general case of k instantons. Following the saddle-point

approach of [8] and also building upon the 1-instanton calculation of the previous section,

we will evaluate the multi-instanton partition function (4.15).

The first step is to reduce the k-instanton measure to the SU(N)-gauge-invariant

expression [8]. The expression (4.15) can be simplified by transforming to a smaller set of

gauge-invariant collective coordinates (i.e., variables without an uncontracted ‘u’ index). In

the bosonic sector this means changing variables from {w, w̄} to the W variables introduced

as follows:
(

W α̇
β̇

)

ij
= w̄α̇

iu wjuβ̇ , W 0 = tr2 (W ) , W c = tr2 (τ cW ) , c = 1, 2, 3 . (6.1)

This enables us to reduce the number of bosonic integrations using the Jacobian identity

is proved in [8]:

d2Nkw̄ d2Nkw = ck,N

(

det2kW
)N−2k

dk2
W 0

∏

c=1,2,3

dk2
W c , (6.2)

where ck,N is a constant. An important feature of this change of variables is that it allows

us to eliminate the bosonic ADHM constraints [43, 8]. The ADHM constraints in eq. (4.15),

which are quadratic in the {w, w̄} coordinates, become linear in terms of W

0 = W c + [ a′n , a′m ] tr2 (τ cσ̄nm) = W c − i [ a′n , a′m ] η̄c
nm . (6.3)

We therefore use eq. (6.3) to eliminate W c from the measure together with the delta-

functions of the bosonic ADHM constraints. Furthermore, we note that as N → ∞, the

Jacobian factor of (detW )N = exp(N tr log W ) in (6.2) will be amenable to a saddle-point

treatment.

In the fermion sector, following [43, 8], we change variables from {µ, µ̄} to {ζ, ζ̄, ν, ν̄}
defined by

µA
iu = wujα̇ ζ α̇A

ji + νA
iu , µ̄A

iu = ζ̄A
α̇ij w̄α̇

ju + ν̄A
iu , (6.4)

where the ν modes form a basis for the ⊥-space of w :

0 = w̄α̇
iuνA

ju = ν̄A
iuwjuα̇ , (6.5)

In these variables the fermionic ADHM constraints in eq. (4.15) have the gauge-invariant

form

0 = ζ̄A W + W ζA + [M′A, a′] (6.6)

which can be used to eliminate ζ̄A in favor of ζA and M′A; doing so gives a factor which

precisely cancels the Jacobian for the change of variables (6.4).
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Since the ν and ν̄ modes are absent from the constraint (6.6), they can now be straight-

forwardly integrated out. First, we decompose ΛA∗B = Λ̂A∗B + Λ̃A∗B , where

(Λ̂A∗B)ij =
1

2
√

2

(

ν̄A
iu ∗ νB

ju − ν̄B
iu ∗ νA

ju

)

, (6.7)

and

Λ̃A∗B =
1

2
√

2

(

ζ̄A ∗ WζB − ζ̄B ∗ WζA + [M′A , M′B ]∗
)

. (6.8)

Second, we calculate

∫

d4k(N−2k)ν d4k(N−2k)ν̄ exp

(

4πi

g
trk(χABΛ̂A∗B)

)

=

(

8π2

g2

)2k(N−2k)
(

det4k eiπβABχAB

)N−2k
(6.9)

To simplify notation we introduce a notation qAB = eiπβAB , so the determinant in (6.9)

can be written as11 (det4k qχ)N . It too will contribute to the saddle-point equations in the

large-N limit, similarly to the (detW )N factor in eq. (6.2). The third and final contribution

to these equations will be the Gaussian term χLχ in eq. (4.15), once one rescales χAB →√
NχAB so that N factors out in front. Combining the above manipulations, we write

down the final expression for the SU(N)-gauge-invariant measure (cf. [8]):

∫

dµk
phys e−Sk

inst =

g8k2
Nk2

e−8π2k/g2

227k2/2−k/2 π13k2
Vol(U(k))

∫

dk2
W 0 d4k2

a′ d6k2
χ

∏

A=1,2,3,4

d2k2M′A d2k2
ζA (6.10)

× (det2kW det4kqχ)−2k exp
[

− NS
k (β)
eff + 4πig−1

√
N trk(χABΛ̃A∗B)

]

(6.11)

The constant in front of the integral is written in the large-N limit. In the exponent in the

last line of (6.11) we have grouped all of the order-N terms into the quantity NS
k (β)
eff . The

quantity S
k (β)
eff is the sum of the three terms relevant for the large-N saddle point approach

mentioned above plus a constant piece

S
k (β)
eff := −tr2k log W − tr4k log qχ + εABCD trk (χAB L χCD) − 2k (1 + 3 log 2) . (6.12)

This expression involves the 11k2 bosonic variables comprising the eleven independent k×k

Hermitian matrices W 0, a′n and χa. As mentioned earlier, the remaining components W c,

c = 1, 2, 3, are eliminated in favor of the a′n via the ADHM constraint. The action is also

invariant under the U(k) symmetry which acts by adjoint action on all the variables.

We can apply the large-N saddle-point formalism to the integral in (6.11), but before

doing so we want to slightly simplify S
k (0)
eff with respect to its βR-dependence. Specifically,

we consider the tr4k log qχ term in S
k (β)
eff and split the U(k) variables χij into the sum of

11Note, that qχ is a shorthand for qABχAB which is a product of matrix elements and not not the product

of two matrices.
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the U(1) variables χ?δij and the SU(k) degrees of freedom χ̂ij

χAiBj = χ?
ABδij + χ̂Ai Bj , trk χ̂AB = 0 . (6.13)

We then expand the tr4k log qχ as follows

S
k (β)
eff ∈ N tr4k log qχ = Nk tr4 log qχ? + N tr4k log

(

1 + (qχ?)−1(qχ̂)
)

(6.14)

and further re-write it as

Nk tr4(log qχ? − log χ?) + N tr4k log
(

χ? + χ?(qχ?)−1(qχ̂)
)

. (6.15)

We can now take the small-βR limit (accompanied by the large-N limit). The first term

on the right hand side in (6.15) is equal to k times the single instanton result derived

in the previous section, which is k times Nβ2
R 4π4 Q. Hence, for this term, the relevant

contribution comes at the order-Nβ2
R in the N → ∞, βR → 0 limit.

However, a careful fluctuations analysis along the lines of [8], shows that in the second

term in (6.15) the dominant contribution comes at the order N(βR)0 ∼ N . This makes all

higher-order terms in βR suppressed in the limit. Thus we set q = 1 in the second term

which then reads:

N tr4k log (χ? + χ̂) = N tr4k log χ (6.16)

In summary, we express

NS
k (β)
eff = −Nk tr4(log qχ? − log χ?) + S

k (0)
eff (6.17)

where S
k (0)
eff is given by (6.12) with the substitution β = 0 or equivalently q = 1. The first

term in (6.17) is combined with the k-instanton action 8π2k/g2 in exactly the same way as

in eqs. (5.15), (5.26) in the previous section. This amounts to promoting the Yang-Mills

multi-instanton gauge action to the appropriate τ -dependence required in the supergravity

effective action

exp

[

−8π2k

g2
+ ikθ − Nkβ2

R 4π2 Q

]

= e−2πkτ02G−1/2+2πkτ1 = e2πikτ (6.18)

What remains is S
k (0)
eff , which does not depend on the deformation parameter, it is the

same as in the N = 4 SYM theory and is amendable to the large-N saddle-point treatment.

The saddle-point approach has been set up and the integrations around the saddle-point

solution have been carried out in [8]. Here we will only give a brief summary of the result.

It turns out that the dominant contribution contribution to the integral comes from the

maximally degenerate saddle-point solution:

W 0 = 2ρ2 1[k]×[k], χa = ρ−1Ω̂a 1[k]×[k], a′n = −xn 1[k]×[k] , (6.19)

which corresponds to k coincident Yang-Mills instantons of the same scale-size ρ which live

in the mutually commuting SU(2) subgroups of the SU(N). In the supergravity interpreta-

tion this saddle-point corresponds to a configuration living at a common point {xn, Ω̂a, ρ}
in the deformed AdS5 × S̃5. This is a point-like object – the D-instanton of charge k.
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Around the special solution, the bosonic fluctuations fall into three sets. First, there

are 10 zero modes which correspond to the position of the k-instanton “bound state” in

AdS5 × S̃5. These are exactly the same as in the 1-instanton case. Second, there are k2

fluctuations called ϕ which have a nonzero quadratic coefficient in the small-fluctuations

expansion. The remaining 10k2 − 10 fluctuations first appear beyond quadratic order and

they correspond to the traceless i.e. SU(k) parts χ̂AB, and â′m of the ten k×k matrices χAB

and a′m. Since fluctuations over ϕ are Gaussian, they can be straightforwardly integrated

out.

To complete the expansion, we include the fermion terms in the exponent of (6.11).

The second term in the exponent involves fermionic degrees of freedom appearing in Λ̃A∗B .

Here we again are interested in the leading order non-vanishing contributions in the βR → 0

limit. This amounts to dropping the star product Λ̃A∗B → Λ̃AB . The resulting fermion

terms in the exponent involve the traceless parts ζ̂ α̇A and M̂′A
α coupled to â′m and χ̂AB.

Remarkably, in the large-N limit, the leading-order terms of the effective action around

the saddle-point solution, with the quadratic fluctuations ϕ integrated out, precisely as-

semble themselves into the dimensional reduction from ten to zero of N = 1 supersym-

metric Yang-Mills with gauge group SU(k) in flat space. The SU(k) adjoint-valued ten-

dimensional gauge field and Majorana-Weyl fermion are defined in terms of the fluctuations:

Aµ = N1/4
(

ρ−1â′m, ρχ̂a
)

, Ψ =
( π

2g

)1/2
N1/8

(

ρ−1/2M̂′A
α , ρ1/2ζ̂ α̇A

)

. (6.20)

The action for the dimensionally reduced gauge theory is

S(Aµ,Ψ) = −1

2
trk [Aµ, Aν ]

2 + trk

(

Ψ̄Γµ [Aµ,Ψ]
)

. (6.21)

We conclude that the effective gauge-invariant measure for k instantons in the large-N

limit factorizes into a 1-instanton-like piece, for the position of the bound state in AdS5×S5

and the 16 supersymmetric and superconformal modes, times the partition function Zk of

the dimensionally-reduced N = 1 supersymmetric SU(k) gauge theory in flat space:

∫

dµk
phys e−Sk

inst =

√
Ng8

k3217k2/2−k/2+25 π9k2/2+9

×
∫

dρ

ρ5
d4x dΩ5

∏

A=1,2,3,4

d2ξAd2η̄A e−8π2k/g2 Ẑk , (6.22)

where Ẑk is the partition function of an N = 1 supersymmetric SU(k) gauge theory in ten

dimensions dimensionally reduced to zero dimensions:

Ẑk =
1

Vol SU(k)

∫

SU(k)
d10Ad16Ψ e−S(Aµ,Ψ) . (6.23)

Notice that the rest of the measure, up to numerical factors, is independent of the instanton

number k. When integrating expressions which are independent of the SU(k) degrees-of-

freedom, Ẑk is simply an overall constant factor. A calculation of ref. [46, 47] revealed

that Ẑk is proportional to
∑

d|k d−2, a sum over the positive integer divisors d of k. In our
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notation we have [46, 47, 8]:

Ẑk = 217k2/2−k/2−8π9k2/2−9/2k−1/2
∑

d|k

1

d2
. (6.24)

In summary, on gauge invariant and SU(k) singlet operators, our effective large-N

collective coordinate measure has the following simple form:

∫

dµk
phys e−Sk

inst =

√

Ng2

233π27/2

k

g2

−7/2
∑

d|k

1

d2

∫

d4x dρ

ρ5
d5Ω̂

∏

A=1,2,3,4

d2ξAd2η̄Ae2πikτ . (6.25)

We can already identify a number of key features of the k-instanton measure which are

important for the comparison with the supergravity results (2.14)–(2.18). First, the factor

of (k/g2)−7/2 in the measure maps nicely to the factor in (k/g2)n−7/2 for n = 0 on the

right hand side of (2.18). Second, we recognise the inverse divisors squared contributions
∑

d|k
1
d2 in (6.25) and (2.18). The matching of e2πikτ factors has been mentioned earlier

and it is one of our main results. The factor of
√

Ng2 in (6.25) gives rise to (α′)−1 in

(2.14), and the volume element of the AdS5 is represented via d4x dρ /ρ5 in (6.25). Finally,

the integration over d5Ω̂ gives rise to the volume factor of the 5-sphere. However, as we

have already explained earlier, in our semi-classical limit we cannot distinguish between the

deformed and the undeformed spheres in the pre-exponent. The deformation is, however,

manifest in the exponential factor e2πikτ .

7. Correlation functions

Finally, we can use our measure to calculate the correlation functions Gn(x1, . . . , xn) listed

in (2.19a)–(2.19d). This entails inserting into eq. (6.25) the appropriate product of gauge-

invariant composite chiral operators O1(x1) × · · · × On(xn), which together contain the

requisite 16 exact fermion modes to saturate the 16 Grassmann integrations12 in (6.25).

Since, at leading order in N , the k instantons sit at the same point in AdS5 × S̃5, it

follows that O(k)
j is simply proportional to its single-instanton counterpart: O(k)

j = kO(1)
j .

Therefore Gn scales like (k/g2)
n
. This promotes the factor in the partition function to the

full value required to match with (2.18)

(

k

g2

)−7/2

−→
(

k

g2

)n−7/2

(7.1)

and, as before, factors of G in the pre-exponent in (2.18) cannot be tested in our limit.

Furthermore, it was shown in [5, 8] that the instanton contributions to the operators

O precisely match the functional form of the bulk-to-boundary propagators in (2.20). We

thus conclude that our Yang-Mills multi-instanton results for the correlators Gn which

follow from eq. (6.25) completely reconstruct the supergravity expressions eqs. (2.14)–

(2.18), (2.20).

12We also refer the reader to the earlier discussion following eq. (5.3) and to footnote 9.
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As the final comment we recall that the matching between the supergravity and the

SYM results holds in the opposite limits. The SYM expression is derived in the weak

coupling limit g2N → 0, N → ∞ while the supergravity is a good approximation to

string theory in the strong coupling limit g2N → ∞, N → ∞. This use of different

limits on the two sides of the AdS/CFT correspondence is, of course, the consequence

of the strong-to-weak coupling nature of the AdS/CFT. Nevertheless, even though the

two sets of limits are mutually exclusive, we have shown that the leading order results in

the SYM and in supergravity agree with each other. This agreement between the strong

and the weak coupling limits holds in the instanton case (as it did hold in the original

N = 4 settings in [5 – 8]), but it is not expected to hold in perturbation theory. At

present no non-renormalization theorem is known which would apply to these instanton

effects and explain the agreement. However the fact that there is an agreement between

the results on the two sides of the correspondence must imply a non-trivial consistency of

the AdS/CFT. We refer the reader to refs. [8, 48] for a more detailed discussion on this

point.

8. Generalization to complex β deformations

We conclude with a brief generalization of our instanton approach to the general case

of complex β deformations. These are defined on the SYM side by the superpoten-

tial

ihTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) . (8.1)

Here h and β are two complex parameters which have to satisfy the Leigh-Strassler con-

straint [33] in order to ensure that the resulting theory is conformally invariant at the

quantum level. Anticipating taking the small β limit and also working to the leading order

in perturbation theory around the instanton, the Leigh-Strassler constraint simplifies to

the condition h = g.

The instanton configuration at the leading order in g is still defined by equations

(4.1)–(4.3), with the scalar field equation (4.3) taking the form

D2ΦAB =
√

2 i ( eiπβAB λAλB − e−iπβAB λBλA ) (8.2)

where we have set h = g. The β parameter is complex, βAB := βRAB − iσAB and further-

more is assumed to be small. The only modification of our approach in previous sections

required for complex values of β is the modification of the β-deformed determinant in

eq. (5.4) which arises from the integration of the ν and ν̄ fermion zero modes in the one-

instanton background. We now need to calculate the complex-β-deformed counterpart of

the determinant of the equation (5.6) with the complex parameter β = βR − iσ and in the

|β|2 ¿ 1 limit. By following the same steps which lead from (5.6) to (5.15) we find

F = exp

[

−8π2

g2
+ iθ − N(β2

R − σ2 − 2iβRσ) 4π2 Q

]

. (8.3)
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In what follows we will need the expressions for the dilaton φ and the axion C in the

Lunin-Maldacena background [1] for complex β. These read

eφ = eφ0G1/2H , C = C0 + e−φ0 γ̂σ̂H−1Q , (8.4)

G−1 ≡ 1 + (σ̂2 + γ̂2)Q , H ≡ 1 + σ̂2Q , (8.5)

where similarly to the real case, we have defined γ̂ := βRg
√

N and σ̂ := σg
√

N. The

function Q is the same as previously, and the axion C is to be distinguished from the

constant C0 = θ
2π .

Next we compare the characteristic exponential factor (8.3) arising from the Yang-Mill

instanton, to the exponential e2πiτ expected in the modular form terms in the IIB effective

action in the Lunin-Maldacena background. We have

e2πiτ = e2πi(ie−φ+C) = exp
[

−2πe−φ0 [1 + 1
2(γ̂2 − σ̂2)Q] + 2πi(C0 + e−φ0 γ̂σ̂Q)

]

(8.6)

In the second equality we have used the expressions for the dilaton and the axion fields

of the β-deformed background in the weak-coupling large-N small-β limit, i.e. in the

expansion in terms of σ̂ and γ̂ we ignore terms of order cubic or higher. By employing the

usual relations γ̂2 = β2
RNg2 and σ̂2 = σ2Ng2 we arrive at

e2πiτ = exp

[

−8π2

g2
+ iθ − N(β2

R − σ2) 4π2 Q + N8π2iσβRQ

]

, (8.7)

By comparing the last equation to (8.3) it is immediate to see that

F = e2πiτ . (8.8)

Thus we conclude that our results generalize correctly to the complex β-deformed

AdS/CFT correspondence and are in agreement with the expectations on the string theory

side.
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A. D-instanton partition function

In this appendix we show construct the D-instanton partition function in the β-deformed

string theory and show that it reproduces the corresponding gauge theory result in section 4.

In string theory, D-instanton is a point-like defect — the D(-1) brane, hence its parti-

tion function is described in terms of a matrix model integral. The partition function of k

D-instantons on N D3-branes in the type IIB theory was previously constructed in ref. [8].

Here we will generalize this construction to include the β-deformation effects on the string

theory side.
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Following ref. [8] we first consider the kD(-1) branes in interacting with the ND3 branes

in the standard type IIB string theory. This description accounts for the D-instanton

effects in the undeformed AdS5 × S5 background dual to the N = 4 Yang-Mills. From the

perspective of the kD(-1) world-volume, the kD(-1)/ND3 brane system is described by the

partition function [8],

Zk,N =

∫

dµk,N e−Sk,N . (A.1)

Here the D-instanton integration measure dµk,N and action Sk,N are over the D-instanton

collective coordinates, and the D-3 brane degrees of freedom are turned off. This is a

0 + 0-dimensional matrix model which can be obtained by the dimensional reduction from

the U(k) × U(N) gauge theory describing kDp branes and ND(p + 4) branes.13 The

kDp/ND(p+4) brane system can live in the maximal dimension p = 5 which corresponds to

the 6-dimensional gauge theory on the world-volume of the D5-branes. Then the cases 5 ≥
p ≥ −1 follow by dimensional reduction. The D-instanton partition function corresponds

to the minimal case of p = −1. For practical calculations it is most convenient to start

with the maximal case p = 5 to specify the field content of the model, and then reduce to

zero dimensions, p = −1.

The content of the kD5/ND9 system is described by the (1, 1) vector multiplet and

two bi-fundamental hypermultiplets in the 6-dimensional world-volume of kD5 branes.

The vector multiplet transforms in the adjoint representation of the U(k) gauge group and

represents the open-string degrees of freedom of the kD5 branes in isolation. On the other

hand, the U(k)×U(N) bi-fundamental hyper-multiplets incorporate the modes of the open

strings stretched between the k branes and the N branes (two species of hypermultiplets

correspond to two orientations of the open strings). Thus the hypermultiplets describe the

interactions between D-instantons and the spectator branes. The component fields of the

vector multiplet are listed in the table 1, and the hypermultiplet fields are listed in table 2.

The D-instanton integration measure is uniquely determined by the action of this U(k)

theory with hypermultiplets. Dimensionally reducing from d = 6 to 0 dimensions one finds

[8] the partition function:

Zk,N =
g4
4

Vol U(k)

∫

d4k2
a′ d8k2M′d6k2

χd8k2
λd3k2

D d2kNw d2kN w̄ d4kNµ d4kN µ̄ exp[−Sk,N ]

(A.2)

where Sk,N = g−2
0 SG + SK + SD and

SG = trk

(

− [χa, χb]
2 +

√
2iπλα̇A[χ†

AB, λα̇
B ] + 2DcDc

)

, (A.3a)

SK = −trk

(

[χa, a
′
n]2 + χaw̄

α̇
uwuα̇χa +

√
2iπM′αA[χAB,M′B

α ] + 2
√

2iπµ̄A
u χABµB

u

)

, (A.3b)

SD = iπtrk

(

[a′αα̇,M′αA]λα̇
A + µ̄A

u wuα̇λα̇
A + w̄uα̇µA

u λα̇
A + π−1Dc(τ c)β̇α̇(w̄α̇wβ̇ + ā′α̇αa′

αβ̇
)
)

.

(A.3c)

13From the instanton perspective, and in the α′ → 0 limit, the overall U(1) factor in the U(N) gauge

group is irrelevant. Hence for the purposes of this paper we will not distinguish between the U(k) × U(N)

and U(k)×SU(N) cases. However, the U(1) factor in the U(k) groups is physically significant, it describes

the centre of mass degrees of freedom of the k-instanton which are important.

– 26 –



J
H
E
P
0
4
(
2
0
0
6
)
0
4
9

Component Description U(k) U(N)

χ1...6 Gauge Field k × k 1

λα̇ Gaugino k × k 1

D1...3 Auxiliary Field k × k 1

a′αα̇ Scalar Field k × k 1

M′
α̇ Fermion Field k × k 1

Table 1: Components of the (1, 1) vector multiplet in d = 6. They describe k D5 branes in

isolation.

Component Description U(k) U(N)

wα̇ Scalar Field k N

µ Fermion Field k N

w̄α̇ Scalar Field k̄ N̄

µ̄ Fermion Field k̄ N̄

Table 2: Components of bi-fundamental hypermultiplets in d = 6. They describe interactions

between k D5 and N D9 branes.

Equations above define the kD-instanton measure in string theory in the flat back-

ground and in presence of the ND-3 branes. We now want to β-deform this background.

Lunin and Maldacena have argued in [1] that the open string field theory in the β-

deformed background is obtained from the theory on the undeformed background precisely

by changing the star-product between the fields carrying the relevant U(1) charges. In

our case, this implies that the star product should be used instead of ordinary prod-

ucts for all fields transforming under the SO(6) = U(4) R-symmetry. This requires

star products in expressions involving χ, λ and D fields in the equations (A.3a)–(A.3c)

above. We also recall that the star product is trivial between the fields of opposite

charges and hence can be dropped in the terms which are quadratic in charged fields.

This amounts to the following equations for the action terms in (A.2) in the β-deformed

background:

Sβ
G = trk

(

− [χa, χb]∗[χa, χb]∗ +
√

2iπλα̇A ∗ [χ†
AB , λα̇

B ]∗ + 2DcDc
)

, (A.4a)

Sβ
K = −trk

(

[χa, a
′
n]2 + χaw̄

α̇
uwuα̇χa +

√
2iπM′αA ∗ [χAB ,M′B

α ]∗ + 2
√

2iπµ̄A
u ∗ χAB ∗ µB

u

)

,

(A.4b)

Sβ
D = iπtrk

(

[a′αα̇,M′αA]λα̇
A + µ̄A

u wuα̇λα̇
A + w̄uα̇µA

u λα̇
A+π−1Dc(τ c)β̇α̇(w̄α̇wβ̇+ā′α̇αa′

αβ̇
)
)

=SD

(A.4c)
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The D-instanton partition function Zk,N depends explicitly on the inverse string tension

α′ through the zero-dimensional coupling g2
0 ∝ (α′)−2 which appears in g−2

0 Sβ
G which

comes from the dimensional reduction of the d = 6 gauge action. In the field theory limit

the fundamental string scale is set to zero, α′ = 0, to decouple the world-volume gauge

theory from gravity. Thus, as explained in [8], to derive the ADHM-instanton measure in

conventional supersymmetric gauge theory one must take the limit α′ → 0. In this limit

g2
0 → ∞ equations of motion for Dc are precisely the non-linear ADHM constraints, first

equation in (4.5). Similarly equations of motion for λ are the fermionic ADHM constraints

in (4.5). Integration over Dc and λα̇
A yields δ-functions which impose the constraints.

We can now make contact with our result (4.15) for the instanton partition function

in gauge theory derived in section 4. First, we integrate out the Dc and λα̇
A variables, thus

getting the δ-functions of the ADHM constraints, precisely as in (4.15). Second, we rewrite

Sβ
K as,

Sβ
K = trk χaLχa − 4πi trk χAB ΛA∗B . (A.5)

This is equal to (minus) the exponent appearing in equation (4.12). On integrating out the

gauge field χa, the instanton action reduces to the fermion quadrilinear term (4.9). We have

therefore reproduced our result for the ADHM measure in the β-deformed gauge theory, up

to an overall normalization constant. This is completely analogous to the matching between

D- and gauge-instanton partition functions discovered in [8] – the only novelty in the present

case is the appearance of the star products on both sides of the correspondence. What

this matching really tests in the β-deformed theory is the validity of the prescription for

introducing β-deformations in the open-string theory conjectured by Lunin and Maldacena

and which we have used to derive the results (A.4a)–(A.4c) above.
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